Custom Search
|
|
Learning Objective: Explain the operating principles of a pneumatic system. Identify operational characteristics and service procedures applicable to heavy-duty compressors. The word pneumatics is a derivative of the Greek word pneuma, which means air, wind, or breath. Pneumatics can be defined as that branch of engineering science that pertains to gaseous pressure and flow. As used in this manual, pneumatics is the portion of fluid power in which compressed air, or other gas, is used to transmit and control power to actuating mechanisms. This section discusses the basic principles of pneumatics, characteristics of gases, heavy-duty air compressors, and air compressor maintenance. It also discusses the hazards of pneumatics, methods of controlling contamination, and safety precautions associated with compressed gases. BASIC PRINCIPLES OF PNEUMATICS Compressibility and Expansion of Gases Kinetic Theory of Gases Increasing the speed with which the molecules hit the walls can also increase the gas pressure in a container. If the temperature of the gas is raised, the molecules move faster, causing an increase in pressure. This can be shown by considering the automobile tire. When you take a long drive on a hot day, the pressure in the tires increases and a tire that appeared to be soft in cool morning temperature may appear normal at a higher midday temperature. Boyle's Law
Figure 3-49.- Molecular bombardment creating pressure. Temperature is a dominant factor affecting the physical properties of gases. It is of particular concern in calculating changes in the state of gases. Therefore, the experiment must be performed at a constant temperature. The relationship between pressure and volume is known as Boyle's law. Boyle's law states when the temperature of a gas is constant, the volume of an enclosed gas varies inversely with pressure. Boyle's law assumes conditions of constant temperature. In actual situations this is rarely the case. Temperature changes continually and affects the volume of a given mass of gas. Charles's Law |
|