Order this information in Print

Order this information on CD-ROM

Download in PDF Format

     

Click here to make tpub.com your Home Page

Page Title: CHAPTER 6 CONCRETE
Back | Up | Next

tpub.com Updates

Google


Web
www.tpub.com

Home

   
Information Categories
.... Administration
Advancement
Aerographer
Automotive
Aviation
Combat
Construction
Diving
Draftsman
Engineering
Electronics
Food and Cooking
Math
Medical
Music
Nuclear Fundamentals
Photography
Religion
USMC
   
Products
  Educational CD-ROM's
Printed Manuals
Downloadable Books
   

 

CHAPTER 6 CONCRETE

Concrete is one of the most important construction materials. It is comparatively economical, easy to make, offers continuity and solidity, and will bond with other materials. The keys to good-quality concrete are the raw materials required to make concrete and the mix design as specified in the project specifications. In this chapter, we'll discuss the characteristics of concrete, the ingredients of concrete, concrete mix designs, and mixing concrete. We'll conclude the chapter with a discussion of precast and tilt-up concrete. At the end of the discussion, we provide helpful references. You are encouraged to study these references, as required, for additional information on the topics discussed.

CONCRETE CHARACTERISTICS LEARNING OBJECTIVE: Upon completing this section, you should be able to define the characteristics of concrete.

Concrete is a synthetic construction material made by mixing cement, fine aggregate (usually sand), coarse aggregate (usually gravel or crushed stone), and water in the proper proportions. The product is not concrete unless all four of these ingredients are present.

CONSTITUENTS OF CONCRETE

The fine and coarse aggregates in a concrete mix are the inert, or inactive, ingredients. Cement and water are the active ingredients. The inert ingredients and the cement are first thoroughly mixed together. As soon as the water is added, a chemical reaction begins between the water and the cement. The reaction, called hydration, causes the concrete to harden. This is an important point. The hardening process occurs through hydration of the cement by the water, not by drying out of the mix. Instead of being dried out, concrete must be kept as moist as possible during the initial hydration process. Drying out causes a drop in water content below that required for satisfactory hydration of the cement. The fact that the hardening process does not result from drying out is clearly shown by the fact that concrete hardens just as well underwater as it does in air.

CONCRETE AS BUILDING MATERIAL

Concrete may be cast into bricks, blocks, and other relatively small building units, which are used in concrete construction. Concrete has a great variety of applications because it meets structural demands and lends itself to architectural treatment. All important building elements, foundations, columns, walls, slabs, and roofs are made from concrete. Other concrete applications are in roads, runways, bridges, and dams.

STRENGTH OF CONCRETE

The compressive strength of concrete (meaning its ability to resist compression) is very high, but its tensile strength (ability to resist stretching, bending, or twisting) is relatively low. Consequently, concrete which must resist a good deal of stretching, bending, or twisting-such as concrete in beams, girders, walls, columns, and the like-must be reinforced with steel. Concrete that must resist only compression may not require reinforcement. As you will learn later, the most important factor controlling the strength of concrete is the water-cement ratio, or the proportion of water to cement in the mix.

Privacy Statement - Press Release - Copyright Information. - Contact Us - Support Integrated Publishing

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business