Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  

 
Losses

Hysteresis losses occur when iron cores in an AC generator are subject to effects from a magnetic field. The magnetic domains of the cores are held in alignment with the field in varying numbers, dependent upon field strength. The magnetic domains rotate, with respect to the domains not held in alignment, one complete turn during each rotation of the rotor. This rotation of magnetic domains in the iron causes friction and heat. The heat produced by this friction is called magnetic hysteresis loss.

To reduce hysteresis losses, most AC armatures are constructed of heat-treated silicon steel, which has an inherently low hysteresis loss. After the heat-treated silicon steel is formed to the desired shape, the laminations are heated to a dull red and then allowed to cool. This process, known as annealing, reduces hysteresis losses to a very low value.

Mechanical Losses

Rotational or mechanical losses can be caused by bearing friction, brush friction on the commutator, and air friction (called windage), which is caused by the air turbulence due to armature rotation. Careful maintenance can be instrumental in keeping bearing friction to a minimum. Clean bearings and proper lubrication are essential to the reduction of bearing friction. Brush friction is reduced by ensuring: proper brush seating, proper brush use, and maintenance of proper brush tension. A smooth and clean commutator also aids in the reduction of brush friction. In very large generators, hydrogen is used within the generator for cooling; hydrogen, being less dense than air, causes less windage losses than air.

Efficiency

Efficiency of an AC generator is the ratio of the useful power output to the total power input. Because any mechanical process experiences some losses, no AC generators can be 100 percent efficient. Efficiency of an AC generator can be calculated using Equation (10-3).

Example: Given a 5 hp motor acting as the prime mover of a generator that has a load demand of 2 kW, what is the efficiency of the generator?

Solution:

In order to calculate efficiency, the input and output power must be in the same units. As described in Thermodynamics, the horsepower and the watt are equivalent units of power.

Therefore, the equivalence of these units is expressed with a conversion factor as follows.

Summary

The important information covered in this chapter is summarized below.

AC Generator Theory Summary

The frequency of the generated voltage in an AC generator can be calculated by multiplying the number of poles by the speed of the generator and dividing by a factor of 120.

The three losses found in an AC generator are:

- Internal voltage drops due to the internal resistance and impedance of the generator

- Hysteresis losses

- Mechanical losses

Efficiency of an AC generator can be calculated by dividing the output by the input and multiplying by 100.

 







Western Governors University
 


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business