Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  

 
Energy Per Nucleon (BE/Al

As the number of particles in a nucleus increases, the total binding energy also increases. The rate of increase, however, is not uniform. This lack of uniformity results in a variation in the amount of binding energy associated with each nucleon within the nucleus. This variation in the binding energy per nucleon (BE/A) is easily seen when the average BE/A is plotted versus atomic mass number (A), as shown in Figure 20.

Figure 20 Binding Energy per Nucleon vs. Mass Number

Figure 20 illustrates that as the atomic mass number increases, the binding energy per nucleon decreases for A > 60. The BE/A curve reaches a maximum value of 8.79 MeV at A = 56 and decreases to about 7.6 MeV for A = 238. The general shape of the BE/A curve can be explained using the general properties of nuclear forces. The nucleus is held together by very short-range attractive forces that exist between nucleons. On the other hand, the nucleus is being forced apart by long range repulsive electrostatic (coulomb) forces that exist between all the protons in the nucleus.

As the atomic number and the atomic mass number increase, the repulsive electrostatic forces within the nucleus increase due to the greater number of protons in the heavy elements. To overcome this increased repulsion, the proportion of neutrons in the nucleus must increase to maintain stability. This increase in the neutron-to-proton ratio only partially compensates for the growing proton-proton repulsive force in the heavier, naturally occurring elements. Because the repulsive forces are increasing, less energy must be supplied, on the average, to remove a nucleon from the nucleus. The BE/A has decreased. The BE/A of a nucleus is an indication of its degree of stability. Generally, the more stable nuclides have higher BE/A than the less stable ones. The increase in the BE/A as the atomic mass number decreases from 260 to 60 is the primary reason for the energy liberation in the fission process. In addition, the increase in the BE/A as the atomic mass number increases from 1 to 60 is the reason for the energy liberation in the fusion process, which is the opposite reaction of fission.

The heaviest nuclei require only a small distortion from a spherical shape (small energy addition) for the relatively large coulomb forces forcing the two halves of the nucleus apart to overcome the attractive nuclear forces holding the two halves together. Consequently, the heaviest nuclei are easily fissionable compared to lighter nuclei.

Summary

The important information in this chapter is summarized on the following page.

Nuclear Fission Summary

The fission process can be explained using the liquid drop model of a nucleus. In the ground state the nucleus is nearly spherical in shape. After the absorption of a neutron, the nucleus will be in an excited state and start to oscillate and become distorted. If the oscillations cause the nucleus to become shaped like a dumbbell, the repulsive electrostatic forces will overcome the short-range attractive nuclear forces, and the nucleus will split in two.

Excitation energy is the amount of energy a nucleus has above its ground state.

Critical energy is the minimum excitation energy that a nucleus must have before it can fission.

Fissile material is material for which fission is possible with neutrons that have zero kinetic energy. Fissionable material is material for which fission caused by neutron absorption is possible provided the kinetic energy added with the binding energy is greater than the critical energy. Fertile material is material that can undergo transmutation to become fissile material.

Transmutation is the process of neutron absorption and subsequent decay, which changes one nuclide to another nuclide. Conversion is the process of transmuting fertile material into fissile material in a reactor, where the amount of fissile material produced is less than the amount of fissile material consumed. Breeding is the same as conversion, except the amount of fissile material produced is more than the amount of fissile material consumed.

The curve of binding energy per nucleon increases quickly through the light nuclides and reaches a maximum at a mass number of about 56. The curve decreases slowly for mass numbers greater than 60.

The heaviest nuclei are easily fissionable because they require only a small distortion from the spherical shape to allow the coulomb forces to overcoming the attractive nuclear force, forcing the two halves of the nucleus apart.

Uranium-235 fissions with thermal neutrons because the binding energy released by the absorption of a neutron is greater than the critical energy for fission. The binding energy released by uranium-238 absorbing a neutron is less than the critical energy, so additional kinetic energy must be possessed by the neutron for fission to be possible.







Western Governors University
 


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business