Tweet |
Custom Search
|
|
Spur Gear Pump The spur gear pump (fig. 4-1) consists of two meshed gears which revolve in a housing. The drive gear in the illustration is turned by a drive shaft which is attached to the power source. The clearances between the gear teeth as they mesh and between the teeth and the pump housing are very small.The inlet port is connected to the fluid supply line, and the outlet port is connected to the pressure line. In figure 4-1 the drive gear is turning in a counterclockwise direction, and the driven (idle) gear is turning in a clockwise direction. As the teeth pass the inlet port, liquid is trapped between the teeth and the housing. This liquid is carried around the housing to the outlet port. As the teeth mesh again, the liquid between the teeth is pushed into the outlet port. This action produces a positive flow of liquid into the system. A shearpin or shear section is incorporated in the drive shaft. This is to protect the power sourceFigure 4-2.Off-centered internal gear pump. Figure 4-1.Gear-type rotary pump. or reduction gears if the pump fails because of is pumped in the same manner as in the spur gear excessive load or jamming of parts. pump. However, in the herringbone pump, each set of teeth begins its fluid discharge phase before the previous set of teeth has completed its discharge phase. This overlapping and the relatively larger space at the center of the gears The herringbone gear pump (fig. 4-3) is a tend to minimize pulsations and give a steadier modification of the spur gear pump. The liquid flow than the spur gear pump.Figure 4-3.Herringbone gear pump. Helical Gear Pump The helical gear pump (fig. 4-4) is still another modification of the spur gear pump. Because of the helical gear design, the overlapping of successive discharges from spaces between the teeth is even greater than it is in the herringbone gear pump; therefore, the discharge flow is smoother. Since the discharge flow is smooth in the helical pump, the gears can be designed with a small number of large teeththus allowing increased capacity without sacrificing smoothness of flow.The pumping gears of this type of pump are driven by a set of timing and driving gears that help maintain the required close clearances without actual metallic contact of the pumping gears. (Metallic contact between the teeth of the pumping gears would provide a tighter seal against slippage; however, it would cause rapid wear of the teeth, because foreign matter in the liquid would be present on the contact surfaces.) Roller bearings at both ends of the gear shafts maintain proper alignment and minimize the friction loss in the transmission of power. Suitable packings are used to prevent leakage around the shaft.Off-centered Internal Gear Pump This pump is illustrated in figure 4-2, view B. The drive gear is attached directly to the drive shaft of the pump and is placed off-center in relation to the internal gear. The two gears mesh on one side of the pump, between the suction (inlet) and discharge ports. On the opposite side of the chamber, a crescent-shaped form fitted to a close tolerance fills the space between the two gears. The rotation of the center gear by the drive shaft causes the outside gear to rotate, since the two are meshed. Everything in the chamber rotates except the crescent. This causes liquid to be trapped in the gear spaces as they pass the crescent. The liquid is carried from the suction port to the discharge port where it is forced out of the pump by the meshing of the gears. The size of the crescent that separates the internal and external gears determines the volume delivery of the pump. A small crescent allows more volume of liquid per revolution than a larger crescent.Figure 4-4.Helical gear pump. Centered Internal Gear Pump Another design of internal gear pump is illustrated in figures 4-5 and 4-6. This pump consists of a pair of gear-shaped elements, one within the other, located in the pump chamber. The inner gear is connected to the drive shaft of the power source.The operation of this type of internal gear pump is illustrated in figure 4-6. To simplify the explanation, the teeth of the inner gear and the spaces between the teeth of the outer gear are numbered. Note that the inner gear has one less tooth than the outer gear. The tooth form of each gear is related to that of the other in such a way that each tooth of the inner gear is always in sliding contact with the surface of the outer gear. Each tooth of the inner gear meshes with the outer gear at just one point during each revolution. In the illustration, this point is at the X. In view A, tooth 1 of the inner gear is meshed with space 1 of the outer gear. As the gears continue to rotate in a clockwise direction and the teeth approach point X, tooth 6 of the inner gear will mesh with space 7 of the outer gear, tooth 5 with space 6, and so on. During this revolution, tooth 1 will mesh with space 2; and during the following revolution, tooth 1 will mesh with space 3. As a result, the outer gear will rotate at just six-sevenths the speed of the inner gear. At one side of the point of mesh, pockets of increasing size are formed as the gears rotate, while on the other side the pockets decrease in size. In figure 4-6, the pockets on the right-hand side of the drawings are increasing in size toward the bottom of the illustration, while those on the left-hand side are decreasing in size toward the top of the illustration. The intake side of the pump would therefore be on the right and the discharge side on the left. In figure 4-5, since the right-hand side of the drawing was turned over to show the ports, the intake and discharge appear reversed. Actually, A in one drawing covers A in the other.Figure 4-5.Centered internal gear pump. Figure 4-6.Principles of operation of the internal gear pump. |
||