synchro transmitter is usually geared to a manual or mechanical input. This gearing may drive a visual indicator showing the value or quantity being transmitted. The rotor of the receiver synchronizes itself electrically with the position of the rotor of the transmitter and thus responds to the quantity being transmitted. ">
Custom Search
|
|
A torque transmitter (TX) and a torque receiver (TR) make up a simple torque-synchro system. Basically, the electrical construction of synchro transmitters and receivers is similar, but their intended functions are different. The rotor of a synchro transmitter is usually geared to a manual or mechanical input. This gearing may drive a visual indicator showing the value or quantity being transmitted. The rotor of the receiver synchronizes itself electrically with the position of the rotor of the transmitter and thus responds to the quantity being transmitted. BASIC SYNCHRO SYSTEM OPERATION A simple synchro transmission system consisting of a torque transmitter connected to a torque receiver (TX-TR) is illustrated in figure 1-16. As you can see, in this system the rotors are connected in parallel across the ac line. The stators of both synchros have their leads connected S1 to S1, S2 to S2, and S3 to S3, so the voltage in each of the transmitter stator coils opposes the voltage in the corresponding coils of the receiver. The voltage directions are indicated by arrows for the instant of time shown by the dot on the ac line voltage. Figure 1-16. - A simple synchro transmission system.
When both transmitter and receiver rotors in a synchro system are on zero or displaced from zero by the same angle, a condition known as CORRESPONDENCE exists. In view A of figure 1-16, the transmitter and receiver are shown in correspondence. In this condition, the rotor of the TR induces voltages in its stator coils (S2 = 52V; S1 and S3 = 26V) that are equal to and opposite the voltages induced into the TX stator coils (S2 = 52V; S1 and S3 = 26V). This causes the voltages to cancel and reduces the stator currents to zero. With zero current through the coils, the receiver torque is zero and the system remains in correspondence. The angle through which a transmitter rotor is mechanically rotated is called a SIGNAL. In view B of figure 1-16, the signal is 60. Now, consider what happens to the two synchros in correspondence when this signal is generated When the transmitter rotor is turned, the rotor field follows and the magnetic coupling between the rotor and stator windings changes. This results in the transmitter S2 coil voltage decreasing to 26 volts, the S3 coil voltage reversing direction, and the S1 coil voltage increasing to 52 volts. This imbalance in voltages, between the transmitter and receiver, causes current to flow in the stator coils in the direction of the stronger voltages. The current flow in the receiver produces a resultant magnetic field in the receiver stator in the same direction as the rotor field in the transmitter. A force (torque) is now exerted on the receiver rotor by the interaction between its resultant stator field and the magnetic field around its rotor. This force causes the rotor to turn through the same angle as the rotor of the transmitter. As the receiver approaches correspondence, the stator voltages of the transmitter and receiver approach equality. This action decreases the stator currents and produces a decreasing torque on the receiver. When the receiver and the transmitter are again in correspondence, as shown in view C, the stator voltages between the two synchros are equal and opposite (S1 = 52V; S2 and S3 = 26V), the rotor torque is zero, and the rotors are displaced from zero by the same angle (60). This sequence of events causes the transmitter and receiver to stay in correspondence. In the system we just explained, the receiver reproduced the signal from the transmitter. As you can see, a synchro system such as this could provide a continuous, accurate, visual reproduction of important information to remote locations. Q.24 What two components make up a simple synchro transmission system? Receiver Rotation When the teeth of two mechanical gears are meshed and a turning force is applied, the gears turn in opposite directions. If a third gear is added, the original second gear turns in the same direction as the first. This is an important concept, because the output of a synchro receiver is often connected to the device it operates through a train of mechanical gears. Whether or not the direction of the force applied to the device and the direction in which the receiver rotor turns are the same depends on whether the number of gears in the train is odd or even. The important thing, of course, is to move the dial or other device in the proper direction. Even when there are no gears involved, the receiver rotor may turn in the direction opposite to the direction you desire. To correct this problem, some method must be used to reverse the receiver's direction of rotation. In the transmitter-receiver system, this is done by reversing the S1 and S3 connections so that SI of the transmitter is connected to S3 of the receiver and vice versa (fig. 1-17), view (A) and view (B). Figure 1-17A. - Effect of reversing the S1 and S3 connections between the transmitter and the receiver.
Figure 1-17B. - Effect of reversing the S1 and S3 connections between the transmitter and the receiver.
Even when the S1 and S3 connections are reversed, the system at 0 acts the same as the basic synchro system we previously described at 0. This is because the voltages induced in the S1 and S3 stator windings are still equal and oppose each other. This causes a canceling effect, which results in zero stator current and no torque. Without the torque required to move the receiver rotor, the system remains in correspondence and the reversing of the stator connections has no noticeable effect on the system at 0. Suppose the transmitter rotor is turned counterclockwise 60, as shown in view A of figure 1-17. The TX rotor is now aligned with S1. This results in maximum magnetic coupling between the TX rotor and the S1 winding. This maximum coupling induces maximum voltage in S1. Because S1 is connected to S3 of the TR, a voltage imbalance occurs between them. As a result of this voltage imbalance, maximum current flows through the S3 winding of the TR causing it to have the strongest magnetic field. Because the other two fields around S2 and S1 decrease proportionately, the S3 field has the greatest effect on the resultant TR stator field. The strong S3 stator field forces the rotor to turn 60 clockwise into alignment with itself, as shown in view B. At this point, the rotor of the TR induces canceling voltages in its own stator coils and causes the rotor to stop. The system is now in correspondence. Notice that by reversing S1 and S3, both synchro rotors turn the same amount, but in OPPOSITE DIRECTIONS. We must emphasize that the only stator leads ever interchanged, for the purpose of reversing receiver rotation, are S1 and S3. S2 cannot be reversed with any other lead since it represents the electrical zero position of the synchro. As you know, the stator leads in a synchro are 120 apart. Therefore, any change in the S2 lead causes a 120 error in the synchro system and also reverses the direction of rotation. In new or modified synchro systems, a common problem is the accidental reversal of the R1 and R2 leads on either the transmitter or receiver. This causes a 180 error between the two synchros, but the direction of rotation remains the same. Q.28 What two receiver leads are reversed to reverse the rotor's direction of rotation?
|