Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  

DUPLEXERS

Whenever a single antenna is used for both transmitting and receiving, as in a radar system, problems arise. Switching the antenna between the transmit and receive modes presents one problem; ensuring that maximum use is made of the available energy is another. The simplest solution is to use a switch to transfer the antenna connection from the receiver to the transmitter during the transmitted pulse and back to the receiver during the return (echo) pulse. No practical mechanical switches are available that can open and close in a few microseconds. Therefore, ELECTRONIC SWITCHES must be used. Switching systems of this type are called DUPLEXERS.

BASIC DUPLEXER OPERATION

In selecting a switch for this task, you must remember that protection of the receiver input circuit is as important as are output power considerations. At frequencies where amplifiers may be used, amplifier tubes can be chosen to withstand large input powers without damage. However, the input circuit of the receiver is easily damaged by large applied signals and must be carefully protected.

An effective radar duplexing system must meet the following four requirements:

  • During the period of transmission, the switch must connect the antenna to the transmitter and disconnect it from the receiver.
  • The receiver must be thoroughly isolated from the transmitter during the transmission of the high-power pulse to avoid damage to sensitive receiver components.
  • After transmission, the switch must rapidly disconnect the transmitter and connect the receiver to the antenna. For targets close to the radar to be seen, the action of the switch must be extremely rapid.
  • The switch should absorb an absolute minimum of power both during transmission and reception.

Therefore, a radar duplexer is the microwave equivalent of a fast, low-loss, single-pole, double-throw switch. The devices developed for this purpose are similar to spark gaps in which high-current microwave discharges furnish low-impedance paths. A duplexer usually contains two switching tubes (spark gaps) connected in a microwave circuit with three terminal transmission lines, one each for the transmitter, receiver, and antenna. As shown in views A and B of figure 2-12, these circuits may be connected in parallel or in series. Both systems will be discussed in detail in this section. One tube is called the TRANSMIT-RECEIVER TUBE, or TR TUBE; the other is called the ANTITRANSMIT-RECEIVE TUBE, or ATR TUBE. The tr tube has the primary function of disconnecting the receiver, and the atr tube of disconnecting the transmitter.

Figure 2-12. - Duplexer systems.

The overall action of the tr and atr circuits depends upon the impedance characteristics of the quarter-wavelength section of transmission line. A quarter-wavelength, or an odd multiple of the quarter-wavelength, transmission line presents opposite impedance values at the ends; one end of the line appears as a short and the other end appears as an open.

TR Tube

The type of spark gap used as a tr tube may vary. It may be one that is simply formed by two electrodes placed across the transmission line; or it may be one enclosed in an evacuated glass envelope with special features to improve operation. The requirements of the spark gap are (1) high impedance prior to the arc and (2) very low impedance during arc time. At the end of the transmitted pulse the arc should be extinguished as rapidly as possible. Extinguishing the arc stops any loss caused by the arc and permits signals from nearby targets to reach the receiver.

The simple gap formed in air has a resistance during conduction of from 30 to 50 ohms. This is usually too high for use with any but an open-wire transmission line. The time required for the air surrounding the gap to completely deionize after the pulse voltage has been removed is about 10 microseconds. During this time the gap acts as an increasing resistance across the transmission line to which it is connected. However, in a tr system using an air gap, the echo signals reaching the receiver beyond the gap will be permitted to increase to half their proper magnitude 3 microseconds after the pulse voltage has been removed. This interval is known as RECOVERY TIME.

Tr tubes are usually conventional spark gaps enclosed in partially evacuated, sealed glass envelopes, as shown in figure 2-13. The arc is formed as electrons are conducted through the ionized gas or vapor. You may lower the magnitude of voltage necessary to break down a gap by reducing the pressure of the gas that surrounds the electrodes. Optimum pressure achieves the most efficient tr operation. You can reduce the recovery time, or DEIONIZATION TIME, of the gap by introducing water vapor into the tr tube. A tr tube containing water vapor at a pressure of 1 millimeter of mercury will recover in 0.5 microseconds. It is important for a tr tube to have a short recovery time to reduce the range at which targets near the radar can be detected. If, for example, echo signals reflected from nearby objects return to the radar before the tr tube has recovered, those signals will be unable to enter the receiver.

Figure 2-13. - Tr tube with keep-alive electrode.

Tr tubes used at microwave frequencies are built to fit into, and become a part of, a resonant cavity. You may increase the speed with which the gap breaks down after the transmitter fires by placing a voltage across the gap electrodes. This potential is known as KEEP-ALIVE VOLTAGE and ranges from 100 volts to 1,000 volts. A glow discharge is maintained between the electrodes. (The term GLOW DISCHARGE refers to the discharge of electricity through a gas-filled electron tube. This is distinguished by a cathode glow and voltage drop much higher than the gas-ionization voltage in the cathode vicinity.) This action provides for rapid ionization when the transmitter pulse arrives.

Failure of the tr tube is primarily caused by two factors. The first and most common cause of failure is the gradual buildup of metal particles that have been dislodged from the electrodes. Such metal bits become spattered on the inside of the glass envelope. These particles act as small, conducting areas and tend to lower the Q of the resonant cavity and dissipate power. If the tube continues in use for too long a period in this condition, the particles will form a detuning wall within the cavity and eventually prevent the tube from functioning. A second cause of failure is the absorption of gas within the enclosure by the metal electrodes. This results in a gradual reduction of pressure within the tube to a point where gap breakdown becomes very difficult. The final result is that extremely strong signals (from the transmitter) are coupled to the receiver. Because both types of failures develop gradually, the tr tube periodically must be checked carefully to determine performance level.

Q.27 What type of switches are used as duplexers?wpe1.jpg (945 bytes)
Q.28 What tube in a duplexer has the primary function of disconnecting the receiver? wpe1.jpg (945 bytes)
Q.29 How may the tr tube ionization speed be increased?wpe1.jpg (945 bytes)







Western Governors University


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business