Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  

Logarithmic Receiver

The LOGARITHMIC RECEIVER uses a linear logarithmic amplifier, commonly called a LIN-LOG AMPLIFIER, instead of a normal IF amplifier. The lin-log amplifier is a nonsaturating amplifier that does not ordinarily use any special gain-control circuits. The output voltage of the lin-log amplifier is a linear function of the input voltage for low-amplitude signals. It is a logarithmic function for high-amplitude signals. In other words, the range of linear amplification does not end at a definite saturation point, as is the case in normal IF amplifiers. The comparison of the response curves for normal IF and lin-log amplifiers is shown in figure 2-32. The curves show that a continued increase in the input to the lin-log amplifier causes a continued increase in the output, but at a reduced rate. Therefore, a large signal does not saturate the lin-log amplifier; rather, it merely reduces the amplification of a simultaneously applied small signal. A small echo signal can often be detected by the lin-log receiver when a normal receiver would be saturated.

Figure 2 - 32. - Lin-Log amplifier versus normal IF amplifier.

A typical circuit for obtaining a lin-log response is shown in figure 2-33. If detectors 2 and 3 were not present, the output voltage would be limited by the saturation point of the final IF stage, as it is in a normal IF section. However, when the final stage of the lin-log is saturated, larger signals cause an increase in the output of the next to last stage. This increase is detected by detector 2 and summed with the output of detector 1. This sum produces an increase in the output even though the final stage is saturated. Detector 3 causes the output to continue to increase after the second stage saturates. The overall gain becomes less and less as each stage saturates, but some degree of amplification is still available. The proper choice of IF stage gains and saturation points produces an approximately logarithmic response curve.

Figure 2-33. - Lin-Log receiver block diagram.

Figure 2-34, shows the response curves of the three IF stages in the lin-log amplifier shown in figure 2-33. The responses of the individual stages produce a segmented overall response curve for the receiver.

Figure 2-34. - Lin-Log amplifier stage response curves.

Monopulse Receiver

The most common of the automatic tracking radars is the MONOPULSE RADAR. The monopulse radar obtains the three target position coordinates of range, bearing, and elevation from a single pulse. The receiver for a monopulse radar must have three separate channels to process range, bearing, and elevation information. The block diagram of a simplified monopulse receiver is shown in figure 2-35.

Figure 2-35. - Monopulse receiver block diagram.

As in a conventional receiver, each channel of the monopulse receiver converts the return echo to an IF frequency by mixing the returned signal with a common local oscillator signal. The sum of the energy from all four return signals is mixed with the local oscillator signal to produce range IF information. Bearing information is obtained by subtracting the energy from horns B and D from the energy from horns A and C:

(A + C) - (B + D)

and mixing the difference with the local oscillator signal. The result is a bearing IF signal. Elevation information is obtained in the same way, except the energy from horns C and D is subtracted from the energy from horns

A and B:

(A + B) - (C + D)

If the target is on the elevation and bearing axis, the summations will both be zero; therefore, neither the bearing nor elevation channels will receive an input signal. If either of the bearing or elevation signals is off the axis, an input to the IF channel is produced. This input is subsequently converted to an IF signal in the appropriate channel.

The major difference between the monopulse receiver and the conventional receiver is the requirement for a dc error voltage output from the bearing and elevation channels. The range channel of a monopulse receiver is sent to a conventional ranging circuit for presentation are on an indicator or for use by a range-tracking circuit. However, since most monopulse radars are automatic tracking radars, the outputs of the bearing and elevation channels must be converted to dc error signals for use by automatic bearing and elevation tracking systems. The dc error voltages are applied to the antenna bearing and elevation positioning servos. These servos reposition the antenna until the errors are nulled.

The phase detectors compare the phase of the bearing and elevation IF with a reference IF from the range channels. This comparison produces the dc error pulses needed to drive the antenna servos. The signals from both the bearing and elevation channels are the result of a summation process. They can be either positive (in-phase) or negative (180-degrees out of phase) when compared to the reference IF signal. For example, if the output of horns A and C is smaller than the output of horns B and D, a negative or 180-degree-out-of-phase signal is produced by the bearing channel ( A + C) - (B + D).

If output A + C is greater than output B + D, a positive or in-phase signal is produced by the bearing channel. The phase of the bearing and elevation output signals determines the direction in which the antenna moves; the magnitude of the signal determines the amount of movement. Since two signals must be present at the phase detector to produce an output, an error signal occurs only when a return echo is not on the antenna beam axis.

This technique produces an error signal when the target moves off the radiated beam axis in either bearing or elevation. The error signal causes the antenna to move in the proper direction and for the proper duration to cancel the error signal. This method of automatic tracking is commonly used by weapons-control tracking radar systems.

Q.47 When a large signal and a small signal are applied to a lin-log amplifier at the same time, what is the effect on the small signal?wpe1.jpg (945 bytes)
Q.48 What happens to the overall gain of a lin-log amplifier as each stage saturates? wpe1.jpg (945 bytes)
Q.49 A monopulse receiver has how many separate channels?wpe1.jpg (945 bytes)
Q.50 If a target is on the bearing axis of the radiated beam, what is the input to the bearing IF channel? wpe1.jpg (945 bytes)
Q.51 What characteristic of the bearing and elevation output signals determines the direction of antenna movement? wpe1.jpg (945 bytes)







Western Governors University


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business