basic measurements. The information that follows summarizes the important points of this chapter. The five basic measurements are VOLTAGE, CURRENT, RESISTANCE, CAPACITANCE, and INDUCTANCE. The accuracy of all measurements depends upon YOUR SKILL as a technician and the accuracy of your TEST EQUIPMENT. ">
Custom Search
|
|
SUMMARY This chapter has presented information on basic measurements. The information that follows summarizes the important points of this chapter. The five basic measurements are VOLTAGE, CURRENT, RESISTANCE, CAPACITANCE, and INDUCTANCE. The accuracy of all measurements depends upon YOUR SKILL as a technician and the accuracy of your TEST EQUIPMENT. Accuracy of different types of test equipment varies greatly and depends on design characteristics, tolerances of individual components, and YOUR KNOWLEDGE of test equipment applications. The METCAL program ensures that your calibrated test equipment meets established specifications. Most equipment technical manuals contain VOLTAGE CHARTS which list correct voltages that should be obtained at various test points. It is important to remember that the INPUT IMPEDANCE of your test equipment must be high enough to prevent circuit loading. When you are performing ac voltage measurements, an additional consideration that greatly affects the accuracy of your measurements is the FREQUENCY LIMITATIONS of your test equipment. Ac and dc CURRENT MEASUREMENTS can be performed using a wide variety of test equipment. Most current measurements require you to break the current path by unsoldering components and wires and inserting an ammeter in series with the current path. One alternative method is to compute (using OHM'S LAW) the current through a circuit by measuring the voltage drop across a known resistance. Another alternative is to use a CURRENT PROBE that requires no unsoldering.
When performing resistance measurements, your primary concerns are the RANGE AND DEGREE OF ACCURACY of your test equipment. In most instances, an analog multimeter is accurate enough to perform basic troubleshooting. When measuring extremely large resistances, you are sometimes required to use a MEGGER or a DIFFERENTIAL VOLTMETER.
When testing current-sensitive devices, you must be certain that the current produced by your test equipment does not exceed the current limitations of the device being tested. Capacitance and inductance measurements are seldom required in the course of troubleshooting. These measurements are usually performed with various types of BRIDGES or with a reactance type of measuring device. The bridge -measuring techniques are more commonly used and are more accurate than reactance types of measurements.
|