|
|
AGGREGATES The material combined with cement and water to make concrete is called aggregate. Aggregate makes up 60 to 80 percent of concrete volume. It increases the strength of concrete, reduces the shrinking tendencies of the cement, and is used as an economical filler. Types Aggregates are divided into fine (usually consisting of sand) and coarse categories. For most building concrete, the coarse aggregate consists of gravel or crushed stone up to 1 1/2 inches in size. However, in massive structures, such as dams, the coarse aggregate may include natural stones or rocks ranging up to 6 inches or more in size. Purpose of Aggregates The large, solid coarse aggregate particles form the basic structural members of the concrete. The voids between the larger coarse aggregate particles are filled by smaller particles. The voids between the smaller particles are filled by still smaller particles. Finally, the voids between the smallest coarse aggregate particles are filled by the largest fine aggregate particles. In turn, the voids between the largest fine aggregate particles are filled by smaller fine aggregate particles, the voids between the smaller fine aggregate particles by still smaller particles, and soon. Finally, the voids between the finest grains are filled with cement. You can see from this that the better the aggregate is graded (that is, the better the distribution of particles sizes), the more solidly all voids will be filled, and the denser and stronger will be the concrete. The cement and water form a paste that binds the aggregate particles solidly together when it hardens. In a well-graded, well-designed, and well-mixed batch, each aggregate particle is thoroughly coated with the cement-water paste. Each particle is solidly bound to adjacent particles when the cement-water paste hardens. AGGREGATE SIEVES.- The size of an aggregate sieve is designated by the number of meshes to the linear inch in that sieve. The higher the number, the finer the sieve. Any material retained on the No. 4 sieve can be considered either coarse or fine. Aggregates huger than No. 4 are all course; those smaller are all fines. No. 4 aggregates are the dividing point. The finest coarse-aggregate sieve is the same No. 4 used as the coarsest fine-aggregate sieve. With this exception, a coarse-aggregate sieve is designated by the size of one of its openings. The sieves commonly used are 1 1/2 inches, 3/4 inch, 1/2 inch, 3/8 inch, and No. 4. Any material that passes through the No. 200 sieve is too fine to be used in making concrete. PARTICLE DISTRIBUTION.- Experience and experiments show that for ordinary building concrete, certain particle distributions consistently seem to produce the best results. For tine aggregate, the recommended distribution of particle sizes from No. 4 to No. 100 is shown in table 6-1. The distribution of particle sizes in aggregate is determined by extracting a representative sample of the material, screening the sample through a series of sieves ranging in size from coarse to fine, and determining the percentage of the sample retained on each sieve. This procedure is called making a sieve analysis. For example, suppose the total sample weighs 1 pound. Place this on the No. 4 sieve, and shake the sieve until nothing more goes through. If what is left on the sieve weighs 0.05 pound, then 5 percent of the total sample is retained on the No. 4 sieve. Place what passes through on the No. 8 sieve and shake it. Suppose you find that what stays on this sieve weighs 0.1 pound. Since 0.1 pound is 10 percent of 1 pound, 10 percent of the total sample was retained on the No. 8 sieve. The cumulative retained weight is 0.15 pound. By dividing 0.15 by 1.0 pound, you will find that the total retained weight is 15 percent. The size of coarse aggregate is usually specified as a range between a minimum and a maximum size; for example, 2 inches to No. 4, 1 inch to No. 4, Table 6-1.-Recommended Distribution of Particle Sizes
Table 6-2.-Recommended Maximum and Minimum Particle Sizes 2 inches to 1 inch, and so on. The recommended particle size distributions vary with maximum and minimum nominal size limits, as shown in table 6-2. A blank space in table 6-2 indicates a sieve that is not required in the analysis. For example, for the 2 inch to No. 4 nominal size, there are no values listed under the 4-inch, the 3 1/2-inch, the 3-inch, and the 2 1/2-inch sieves. Since 100 percent of this material should pass through a 2 1/2-inch sieve, there is no need to use a sieve coarser than that size. For the same size designation (that is, 2 inch size aggregate), there are no values listed under the 1 1/2-inch, the 3/4-inch, and the 3/8-inch sieves. Experience has shown that it is not necessary to use these sieves in making this particular analysis. Quality Standards Since 66 to 78 percent of the volume of the finished concrete consists of aggregate, it is imperative that the aggregate meet certain minimum quality standards. It should consist of clean, hard, strong, durable particles free of chemicals that might interfere with hydration. The aggregate should also be free of any superfine material, which might prevent a bond between the aggregate and the cement-water paste. The undesirable substances most frequently found in aggregate are dirt, silt, clay, coal, mica, salts, and organic matter. Most of these can be removed by washing. Aggregate can be field-tested for an excess of silt, clay, and the like, using the following procedure: 1. Fill a quart jar with the aggregate to a depth of 2 inches. 2. Add water until the jar is about three-fourths full. 3. Shake the jar for 1 minute, then allow it to stand for 1 hour. 4. If, at the end of 1 hour, more than 1/8 inch of sediment has settled on top of the aggregate, as shown in figure 6-2, the material should be washed. An easily constructed rig for washing a small amount of aggregate is shown in figure 6-3. Weak, friable (easily pulverized), or laminated (layered) aggregate particles are undesirable. Especially avoid shale, stones laminated with shale, and most varieties of chart (impure flint-like rock). For most ordinary concrete work, visual inspection is enough to reveal any weaknesses in the coarse Figure 6-2.-Quart jar method of determining silt content of sand. Figure 6-3.-Field-constructed rig for washing aggregate. aggregate. For work in which aggregate strength and durability are of vital importance, such as paving concrete, aggregate must be laboratory tested. Handling and Storage A mass of aggregate containing particles of different sizes has a natural tendency toward segregation. "Segregation" refers to particles of the same size tending to gather together when the material is being loaded, transported, or otherwise disturbed. Aggregate should always be handled and stored by a method that minimizes segregation. Stockpiles should not be built up in cone shapes, formed by dropping successive loads at the same spot. This procedure causes segregation. A pile should be built up in layers of uniform thickness, each made by dumping successive loads alongside each other. If aggregate is dropped from a clamshell, bucket, or conveyor, some of the fine material may be blown aside, causing a segregation of fines on the lee side (that is, the side away from the wind) of the pile. Conveyors, clamshells, and buckets should be discharged in contact with the pile. When a bin is being charged (filled), the material should be dropped from a point directly over the outlet. Material chuted in at an angle or material discharged against the side of a bin will segregate. Since a long drop will cause both segregation and the breakage of aggregate particles, the length of a drop into a bin should be minimized by keeping the bin as full as possible at all times. The bottom of a storage bin should always slope at least 50 toward the central outlet. If the slope is less than 50, segregation will occur as material is discharged out of the bin. WATER The two principal functions of water in a concrete mix are to effect hydration and improve workability. For example, a mix to be poured in forms must contain more water than is required for complete hydration of the cement. Too much water, however, causes a loss of strength by upsetting the wgtercement ratio. It also causes "water-gain" on the surface-a condition that leaves a surface layer of weak material, called laitance. As previously mentioned, an excess of water also impairs the watertightness of the concrete. Water used in mixing concrete must be clean and free from acids, alkalis, oils, and organic materials. Most specifications recommend that the water used in mixing concrete be suitable for drinking, should such water be available. Seawater can be used for mixing unreinforced concrete if there is a limited supply of fresh water. Tests show that the compressive strength of concrete made with Seawater is 10 to 30 percent less than that obtained using fresh water. Seawater is not suitable for use in making steel-reinforced concrete because of the risk of corrosion of the reinforcement, particularly in warm and humid environments. |
Privacy Statement - Press Release - Copyright Information. - Contact Us - Support Integrated Publishing |