Order this information in Print

Order this information on CD-ROM

Download in PDF Format

     

Click here to make tpub.com your Home Page

Page Title: MATERIAL ESTIMATES
Back | Up | Next

tpub.com Updates

Google


Web
www.tpub.com

Home

   
Information Categories
.... Administration
Advancement
Aerographer
Automotive
Aviation
Combat
Construction
Diving
Draftsman
Engineering
Electronics
Food and Cooking
Math
Medical
Music
Nuclear Fundamentals
Photography
Religion
USMC
   
Products
  Educational CD-ROM's
Printed Manuals
Downloadable Books
   

 

MATERIAL ESTIMATES

When tables, such as table 6-3, are not available for determining quantities of material required for 1 cubic yard of concrete, a rule of thumb, known as rule 41 or 42, may be used for a rough estimation. According to this rule, it takes either 41 or 42 cubic feet of the combined dry amounts of cement, sand, and aggregates to produce 1 cubic yard of mixed concrete. Rule 41 is used to calculate the quantities of material for concrete when the size of the coarse aggregate is not over 1 inch. Rule 42 is used when the size of the coarse aggregate is not over 2 1/2 inches. Here is how it works.

As we mentioned earlier, a bag of cement contains 94 pounds by weight, or about 1 cubic foot by loose volume. A batch formula is usually based on the number of bags of cement used in the mixing machine.

For estimating the amount of dry materials needed to mix 1 cubic yard of concrete, rules 41 and 42 work in the same manner. The decision on which rule to use depends upon the size of the aggregate. Let's say your specifications call for a 1:2:4 mix with 2-inch coarse aggregates, which means you use rule 42, First, add 1:2:4, which gives you 7. Then compute your material requirements as follows:

Adding your total dry materials, 6 + 12 + 24= 42, so your calculations are correct.

Frequently, you will have to convert volumes in cubic feet to weights in pounds. In converting, multiply the required cubic feet of cement by 94 since 1 cubic foot, or 1 standard bag of cement, weighs 94 pounds. When using rule 41 for coarse aggregates, multiply the quantity of coarse gravel in cubic feet by 105 since the average weight of dry-compacted fine aggregate or gravel is 105 pounds per cubic feet. By rule 42, however, multiply the cubic feet of rock (1-inch-size coarse aggregate) by 100 since the average dry-compacted weight of this rock is 100 pounds per cubic foot.

A handling-loss factor is added in ordering materials for jobs. An additional 5 percent of materials is added for jobs requiring 200 or more cubic yards of concrete, and 10 percent is added for smaller jobs. This loss factor is based on material estimates after the requirements have been calculated. Additional loss factors may be added where conditions indicate the necessity for excessive handling of materials before batching.

Measuring Water

The water-measuring controls on a machine concrete mixer are described later in this chapter. Water measurement for hand mixing can be done with a 14-quart bucket, marked off on the inside in gallons, half-gallons, and quarter-gallons.

Never add water to the mix without carefully measuring the water, and always remember that the amount of water actually placed in the mix varies according to the amount of free water that is already in the aggregate. This means that if the aggregate is wet by a rainstorm, the proportion of water in the mix may have to be changed.

Measuring Aggregate

The accuracy of aggregate measurement by volume depends upon the accuracy with which the amount of "bulking," caused by moisture in the aggregate, can be determined. The amount of bulking varies not only with different moisture contents but also with different gradations. Fine sand, for example, is bulked more than coarse sand by the same moisture content. Furthermore, moisture content itself varies from time to time, and a small variation causes a large change in the amount of bulking. For these and other reasons, aggregate should be measured by weight rather than by volume whenever possible.

To make grading easier, to keep segregation low, and to ensure that each batch is uniform, you should store and measure coarse aggregate from separate piles or hoppers. The ratio of maximum to minimum particle size should not exceed 2:1 for a maximum nominal size larger than 1 inch. The ratio should not exceed 3:1 for a maximum nominal size smaller than 1 inch. A mass of aggregate with a nominal size of 1 1/2 inches to 1/4 inch, for example, should be separated into one pile or hopper containing 1 1/2-inch to 3/4-inch aggregate, and another pile or hopper containing 3/4-inch to 1/4-inch aggregate. A mass with a nominal size of 3 inches to 1/4 inch should be separated into one pile or hopper containing 3-inch to 1 1/2-inch aggregate, another containing 1 1/2-inch to 3/4-inch aggregate, and a third containing 3/4-inch to 1/4-inch aggregate.

Water-Cement Ratio

The major factor controlling strength, everything else being equal, is the amount of water used per bag of cement. Maximum strength is obtained by using just the amount of water, and no more, required for the complete hydration of the cement. As previously mentioned, however, a mix of this type maybe too dry to be workable. Concrete mix always contains more water than the amount required to attain maximum strength. The point for you to remember is that the strength of concrete decreases as the amount of extra water increases.

The specified water-cement ratio is the happy medium between the maximum possible strength of the concrete and the necessary minimum workability requirements. The strength of building concrete is expressed in terms of the compressive strength in pounds per square inch (psi) reached after a 7- or 28-day set. This is usually referred to as "probable average 7-day strength" and "probable average 28-day strength."

Privacy Statement - Press Release - Copyright Information. - Contact Us - Support Integrated Publishing

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business