tetrode, and pentode are used only as voltage amplifiers. When power amplification is required (high-current requirements), special-purpose tubes called POWER PENTODES and BEAM POWER tubes are used. ">

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  

BEAM POWER AND POWER PENTODE TUBES

The tube types you studied in the first chapter have one serious drawback; namely, they are not suitable as power amplifiers. Because of high-plate resistance and internal construction, tubes such as the triode, tetrode, and pentode are used only as voltage amplifiers. When power amplification is required (high-current requirements), special-purpose tubes called POWER PENTODES and BEAM POWER tubes are used.

Figure 2-4 shows the arrangement of grids in a conventional pentode. The small circles depict cross sections of the grids. Notice that each grid is offset, or staggered, from the grid directly behind it. This arrangement of grids permits each grid to be exposed to the electron stream flowing from cathode to plate. In this way, each grid will have maximum effect on the electron stream. There are two undesirable effects associated with the staggered grid arrangement that make it unsuitable for use in power amplifiers.

Figure 2-4. - Electron flow in a conventional pentode.

0092.GIF (11012 bytes)

First, no direct path exists between the cathode and the plate. Electrons leaving the cathode must run an obstacle course around the grid wires to reach the plate. Some of these electrons are deflected by the grid and scattered and, thus, never reach the plate. Second, some electrons strike the grid wires and are removed from the electron stream as grid current. Because of these two undesirable effects, the amount of plate current that can flow through the tube is greatly reduced. Because of this loss of electrons from the stream, conventional tetrodes and pentodes are not suitable for power amplifiers. Therefore, a special class of tubes has been developed to overcome this problem - the BEAM POWER TUBES and POWER PENTODE TUBES.

Figure 2-5 shows the cross section of the power pentode. Notice that there is no staggered grid arrangement. Instead, each grid wire is directly in line with the grid in front of and behind it. The screen and suppressor grids are shielded from the electron stream by the control grid. Because the screen grid is "shielded" by the control grid, it can draw little grid current from the electron stream.

Figure 2-5. - Electron flow in a power pentode.

0093.GIF (10969 bytes)

This arrangement of grids offers few obstacles to electron flow. Electrons will flow in "sheets" between the grid wires to the plate. The effect is to allow more of the electrons leaving the cathode to reach the plate. Thus, the tube has the advantage of high power output and high efficiency. An added advantage to this type of grid arrangement is high-power sensitivity. This means that the tube can respond to much smaller input signals than the conventional electron tube. The reason for this is obvious; many more electrons reach the plate from the cathode. Therefore, large plate currents can be obtained from relatively weak input signals.

Another type of power amplifier tube that is similar to the power pentode is the BEAM POWER TUBE. Beam power tubes have the same grid arrangement as the power pentodes. In addition, they use a set of beam-forming plates to force the electron stream into concentrated beams. Figure 2-6 depicts the internal construction of a beam-forming tube and its schematic representation. Notice that the beam-forming plates surround the grids and their supporting structures and are internally connected to the cathode. This internal connection ensures that the beam-forming plates are at the same negative potential as the cathode. Electrons that are emitted from the sides of the cathode are repelled from the grid supports and into the electron stream by the negative charge on the beam-forming plates. Electrons pass to the plate through the spaces between the beam-forming plates and, by doing so, are concentrated into beams. Because the beam-forming plates are at a negative potential, any electrons emitted by secondary emission are repelled back to the plate. The effect of the beam-forming plates is to increase the number of electrons in the electron stream by forcing stray electrons emitted from the sides of the cathode away from the grid supports and into the electron beam. Electrons that are deflected from the grid wires are also forced into the beam. This increases the total current flowing to the plate. For this reason, both beam-forming and power pentodes are suitable for use as power amplifiers.

Figure 2-6. - The beam-power tube.

0094.GIF (20756 bytes)

VARIABLE-MU TUBES

In most electron-tube circuits, the operating level of a tube is determined by the level of bias. When a negative-bias voltage is applied to the control grid of a tube, with no input signal, the conduction through the tube is reduced; thus the damage to the tube is minimized. There is one drawback to this. Because the control grid is already negatively charged by the bias voltage, the negative alternation of a large input signal will drive the tube into cutoff long before the positive alternation can drive the tube into saturation. Once the negative alternation reaches a certain level (determined by the bias voltage and tube characteristics), the tube simply cuts off. For this reason, conventional tubes, which you previously studied, are called SHARP-CUTOFF TUBES. Because of this sharp cutoff, the range of amplification of the conventional tube is limited by the bias voltage and tube characteristics. Once this range is exceeded, the output becomes distorted due to cutoff.

In most applications, the sharp cutoff feature of conventional electron tubes causes no problems. However, in some applications electron tubes are required to amplify relatively large input signals without distortion. For this reason, the variable-mu tube was developed. VARIABLE-MU TUBES have the ability to reduce their mu, or (m), as the input signal gets larger. As the mu (m) decreases, the likelihood that the tube will be driven into cutoff decreases. (For an amplifier, this may appear to be self-defeating, but it isn't.) The idea is to amplify large input signals as much as possible without causing the tube to cutoff or create distortion. Because of their ability to avoid being driven into cutoff, variable-mu tubes are called REMOTE-CUTOFF TUBES. You should be aware, however, that a variable-mu tube can be driven into cutoff, but the amplitude of the input signal required to do so is considerably greater than in conventional sharp-cutoff tubes.

The key to the ability of a variable-mu tube to decrease gain with an increase in the amplitude of the input lies in its grid construction.

To understand how the unique grid construction of a variable-mu tube works, we will first examine the grid operation of a conventional tube during cutoff. Look at figure 2-7. Here, you see a diagram of a conventional sharp-cutoff triode with zero volts applied to the control grid. In view A, the majority of the electrostatic lines of force leave the positive plate (+) and travel unhindered between the evenly spaced grid wires to the negative cathode (-). Electrons emitted by the cathode travel along these lines from the cathode, through the grid spacings, to the plate.

Figure 2-7. - Cutoff in a conventional tube.

0095.GIF (15380 bytes)

In view B, a bias voltage of - 6 volts is applied to the grid. As you can see, some of the electrostatic lines of force are attracted to the negatively charged grid wires while the rest pass through the grid spacings. Because there are fewer lines of force reaching the cathode, there are fewer paths for electrons to use to reach the plate. As a result, conduction through the tube is decreased.

In view C, the negative potential of the grid has been raised to - 20 volts, which drives the tube into cutoff. All of the electrostatic lines of force terminate at the negatively charged grid, instead of continuing on to the cathode. The electrons emitted by the cathode will not feel the electrostatic attractive force of the positively charged plate. Under these conditions, current cannot flow through the tube.

Now look at figure 2-8. Here you see a diagram of a variable-mu, or remote-cutoff, tube. The only difference between the remote-cutoff tube depicted and the sharp-cutoff tube is in the grid wire spacing. In the conventional sharp-cutoff tube, the grid wires are evenly spaced, while in the remote-cutoff tube the grid wires in the middle of the grid are placed relatively far apart. This is shown in view A.

Figure 2-8. - Grid operation in a remote-cutoff tube.

0098.GIF (16770 bytes)

In view B, the control grid is at zero potential (0 volts). Just as in the sharp-cutoff tube, electrons leave the cathode and travel along the lines of electrostatic attraction, through the spaces between the grid wires to the plate. In view C, a bias voltage of - 6 volts is applied to the grid. Because of the close spacing of the grid wires at the ends of the grid, electrostatic lines of force at the ends are effectively terminated. The lines of force can only pass between the widely spaced grid wires closer to the center of the grid.

In view D, the same negative potential -20 volts) is applied to the grid that caused the conventional sharp-cutoff tube discussed earlier to go into cutoff. This voltage is high enough to terminate most of the electrostatic lines of force on the grid wire. But, because of the wide spacing between the center grid wires, some electrostatic lines of force are still able to pass between the center grid wires and reach the cathode. Conduction will still occur in the tube, but at a reduced level. If the grid is driven even more negative, lines of force will be blocked from reaching the cathode, except at the very center of the grid. As you can see, the remote-cutoff tube, by its ability to reduce gain (conduction), handles large signals without going into cutoff. A variable-mu tube such as a 6SK7 with -3 volts applied to the grid will have a transconductance of about 2000 (m) mhos. If the grid is driven to -35 volts, the transconductance of the tube will decrease to 10 (m) mhos. This same increase in negative-grid voltage would have driven a conventional tube into cutoff long before the grid reached -35 volts.

Q.1 What is the major difference in grid construction between power pentodes and conventional pentodes? answer.gif (214 bytes)
Q.2 Beam-forming tubes and power tubes are similar except that power pentodes lack what element? answer.gif (214 bytes)
Q.3 What effect does the shielding of the screen grid by the control grid have on plate current in beam-forming tetrodes? answer.gif (214 bytes)
Q.4 What effect does a large negative input signal applied to a variable-mu tube have on conduction through the control grid, and gain of the tube? answer.gif (214 bytes)
Q.5 Identify the type of electron tube(s) that would be most suitable for the following applications. answer.gif (214 bytes)







Western Governors University


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business