gun assembly and two vertical channels. However, there are many variations. The horizontal sweep channels vary somewhat from equipment to equipment. Some have one time-base circuit and others have two. These two are interdependent in some oscilloscopes and others are independently controlled. Also, most modern general-purpose oscilloscopes are constructed of modules. That is, most of the vertical circuitry is contained in a removable plug-in unit, and most of the horizontal circuitry is contained in another plug-in unit. ">

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  

ACCESSORIES

The basic dual-trace oscilloscope has one gun assembly and two vertical channels. However, there are many variations. The horizontal sweep channels vary somewhat from equipment to equipment. Some have one time-base circuit and others have two. These two are interdependent in some oscilloscopes and others are independently controlled. Also, most modern general-purpose oscilloscopes are constructed of modules. That is, most of the vertical circuitry is contained in a removable plug-in unit, and most of the horizontal circuitry is contained in another plug-in unit.

The main frame of the oscilloscope is often adapted for many other special applications by the design of a variety of plug-in assemblies. This modular feature provides much greater versatility than in a single-trace oscilloscope. For instance, to analyze the characteristics of a transistor, you can replace the dual-trace, plug-in module with a semiconductor curve-tracer plug-in module.

Other plug-in modules available with some oscilloscopes are high-gain, wide-bandwidth amplifiers; differential amplifiers; spectrum analyzers; physiological monitors; and other specialized units. Therefore, the dual-trace capability is a function of the type of plug-in unit that is used with some oscilloscopes.

To get maximum usefulness from an oscilloscope, you must have a means of connecting the desired signal to the oscilloscope input. Aside from cable connections between any equipment output and the oscilloscope input, a variety of probes are available to assist in monitoring signals at almost any point in a circuit. The more common types include 1-TO-1 PROBES, ATTENUATION PROBES, and CURRENT PROBES. Each of these probes may be supplied with several different tips to allow measurement of signals on any type of test point. Figure 6-40 shows some of the more common probe tips.

Figure 6-40. - Common probe tips.

In choosing the probe to use for a particular measurement, you must consider such factors as circuit loading, signal amplitude, and scope sensitivity.

The 1-to-1 probe offers little or no attenuation of the signal under test and is, therefore, useful for measuring low-level signals. However, circuit loading with the 1-to-1 probe may be a problem. The impedance at the probe tip is the same as the input impedance of the oscilloscope.

An attenuator probe has an internal high-value resistor in series with the probe tip. This gives the probe a higher input impedance than that of the oscilloscope. Because of the higher input impedance, the probe can measure high-amplitude signals that would overdrive the vertical amplifier if connected directly to the oscilloscope. Figure 6-41 shows a schematic representation of a basic attenuation probe. The 9-megohm resistor in the probe and the 1-megohm input resistor of the oscilloscope form a 10-to-1 voltage divider.

Figure 6-41. - Basic attenuation probe.

Since the probe resistor is in series, the oscilloscope input resistance is 10 megohms when the probe is used. Thus, using the attenuator probe with the oscilloscope causes less circuit loading than using a 1-to-1 probe.

Before using an attenuator probe for measurement of high-frequency signals or for fast-rising waveforms, you must adjust the probe compensating capacitor (C1) according to instructions in the applicable technical manual. Some probes will have an IMPEDANCE EQUALIZER in the end of the cable that attaches to the oscilloscope. The impedance equalizer, when adjusted according to manufacturer's instructions, assures proper impedance matching between the probe and oscilloscope. An improperly adjusted impedance equalizer will result in erroneous measurements, especially when you are measuring high frequencies or fast-rising signals.

More information on oscilloscope hook-ups can be found in Electronics Information Maintenance Books (EIMB), Test Methods and Practices.

Special current probes have been designed to use the electromagnetic fields produced by a current as it travels through a conductor. This type of probe is clamped around a conductor without disconnecting it from the circuit. The current probe is electrically insulated from the conductor, but the magnetic fields about the conductor induce a potential in the current probe that is proportional to the current through the conductor. Thus, the vertical deflection of the oscilloscope display will be directly proportional to the current through the conductor.

SPECTRUM ANALYZER

The spectrum analyzer is used to examine the frequency spectrum of radar transmissions, local oscillators, test sets, and any other equipment operating within its testable frequency range. With experience, you will be able to determine definite areas of malfunctioning components within equipment. Successful spectrum analysis depends on the proper operation of a spectrum analyzer and your ability to correctly interpret the displayed frequencies. Although there are many types of spectrum analyzers, we will use the Tektronix, Model 492 for our discussion.

The spectrum analyzer accepts an electrical input signal and displays the frequency and amplitude of the signal on a CRT. On the vertical, or Y, axis, the amplitude is plotted. The frequency would then be found on the horizontal, or X, axis. The overall pattern of this display (figure 6-42) indicates the proportion of power present at the various frequencies within the spectrum (fundamental frequency with sideband frequencies).

Figure 6-42. - Spectrum analyzer pattern.

BASIC FUNCTIONAL DESCRIPTION

The model 492 analyzer can be divided into six basic sections, as follows:

  • Converter section;
  • Intermediate frequency (IF) section;
  • Display section;
  • Frequency control section;
  • Digital control section; and
  • Power and cooling section.

Converter Section

The converter section actually consists of three frequency converters, made up of a mixer, local oscillator (LO), and required filters. Only one frequency can be converted at a time and pass through the filters to reach the next converter. The analysis frequency can, however, be changed by altering the frequency of the LO and adjusting the FREQUENCY control knob.

FIRST CONVERTER. - The first (front end) converter changes the input signal to a usable IF signal that will either be 829 MHz or 2072 MHz. The IF signal to be produced is dependent on which measurement band selection is currently being used. The 829 MHz IF signal will be selected for bands 2 through 4, while the 2072 MHz IF signal is selected for bands 1 and 5 through 11.

Q.18 The first converter is also known by what other name?answer.gif (214 bytes)







Western Governors University


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business