Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  

LOGIC PROBES

Logic probes, as shown in figure 2-26, are extremely simple and useful devices that are designed to help you detect the logic state of an IC. Logic probes can show you immediately whether a specific point in the circuit is low, high, open, or pulsing. A high is indicated when the light at the end of the probe is lit and a low is indicated when the light is extinguished. Some probes have a feature that detects and displays high-speed transient pulses as small as 5 nanoseconds wide. These probes are usually connected directly to the power supply of the device being tested, although a few also have internal batteries. Since most IC failures show up as a point in the circuit stuck either at a high or low level, these probes provide a quick, inexpensive way for you to locate the fault. They can also display that single, short-duration pulse that is so hard to catch on an oscilloscope. The ideal logic probe will have the following characteristics:

Figure 2-26. - Logic probe.

  • Be able to detect a steady logic level
  • Be able to detect a train of logic levels
  • Be able to detect an open circuit
  • Be able to detect a high-speed transient pulse
  • Have overvoltage protection
  • Be small, light, and easy to handle
  • Have a high input impedance to protect against circuit loading

Q.23 What is the purpose of a logic probe? answer.gif (214 bytes)

LOGIC PULSERS

Another extremely useful device for troubleshooting logic circuits is the logic pulser. It is similar in shape to the logic probe and is designed to inject a logic pulse into the circuit under test. Logic pursers are generally used in conjunction with a logic clip or a logic probe to help you trace the pulse through the circuit under test or verify the proper operation of an IC. Some logic pursers have a feature that allows a single pulse injection or a train of pulses. Logic pursers are usually powered by an external dc power supply but may, in some cases, be connected directly to the power supply of the device under test. View A of figure 2-27 shows a typical logic pulser. View B shows a logic pulser (right) used with a logic probe (left).

Figure 2-27A. - Logic pulser.

Figure 2-27B. - Logic pulser.

LOGIC ANALYZER

A relatively new device on the test equipment scene is the logic analyzer. A logic analyzer provides various functions that can assist you in maintenance, testing, and troubleshooting of equipment using digital circuitry. From your standpoint, they are extremely useful in performing timing analysis. Most logic analyzers have crt displays that can monitor up to 32 timing signals at the same time. A large percentage of today's digital equipment is designed with the logic analyzer in mind and have built-in status or bus lines for your convenience in monitoring multiple signals at the same time. When monitoring a bus line, you can readily determine, through visual displays, such things as the presence of master clock signals or sequential timing events.

BATTERY MEASUREMENTS

As a technician, you are primarily concerned with the uses of batteries; however, checking or testing of storage and dry cell batteries is an important part of your maintenance program. Proper preventive maintenance of batteries can significantly extend the useful life of a battery.

STORAGE BATTERIES

When you check a lead-acid type of storage battery for its condition of charge or discharge, you take a specific gravity reading of the electrolyte by using a hydrometer. A specific gravity reading between 1.275 and 1.300 indicates a full-charge condition and assures you that the battery is in good condition. A hydrometer reading of approximately 1.175 indicates a normal discharge condition, and a reading of approximately 1.250 indicates that the battery is half-discharged. Since the acids used in various batteries do not always have the same specific gravity and since electrode composition may differ, the hydrometer reading you obtain at the charged and discharged conditions will vary with the type of electrolyte and battery composition. A general rule for you to follow is not to discharge a battery more than 100 points (.100 specific gravity) before recharging.

Although readings of specific gravity are a reliable measure of the condition of a storage battery, cells that indicate normal may prove useless under load. This is usually caused by a high internal resistance. A load-voltage check of the cells with the use of a cell tester indicates the actual voltage charge held by each battery cell. Cell voltages should not differ by more than 0.15 volt for 6-volt or 12-volt batteries.

Use extreme caution whenever testing or working around lead-acid storage batteries. OPNAVINST 5100.23B emphatically states that you must wear eye protection devices at all times and that emergency eyewash facilities must be immediately adjacent to, or within 10 feet of, any eye-hazard area. Smoking and spark-producing tools or devices are also prohibited in enclosed spaces that contain lead-acid storage batteries. When charging, these batteries produce sufficient quantities of hydrogen to produce large explosions. Lead-acid storage batteries should only be charged in well-ventilated spaces.

Q.24 Emergency eyewash facilities must be located within what minimum number of feet of an eye-hazard area? answer.gif (214 bytes)

DRY BATTERIES

You must periodically check dry cell batteries that are used for test instruments and portable or field equipments for loss of power. For actual voltages of dry batteries, you should measure with a battery tester for a minimum acceptable voltage before installation. The TS-183/U series of battery testers incorporate a multiple-range voltmeter, battery-loading resistors, multiplier resistors, and a jack-switching arrangement that connects the load resistors across the voltmeter for a total of 32 different voltmeter-load resistor combinations. This type of tester permits you to complete a rapid and accurate measurement of battery potentials under load conditions, ranging in voltages from 1.5 to 180 volts. A data chart supplied with the battery tester provides information regarding the jack to be used and minimum acceptable voltages of various batteries used in Navy equipments.

Q.25 What is the advantage of using a battery test set versus a voltmeter to test batteries? answer.gif (214 bytes)







Western Governors University


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business