![]()
Custom Search
|
|
![]() ![]() |
||
You must understand the way light meters operate to determine whether the information they provide is accurate. No matter what type of light meter you use, it is an electrical-mechanical device that can only provide information for which it is designed. You are responsible for translating this information into useful exposure data. Light meters are calibrated to see one shade only-middle gray. This means the information that the meter provides, no matter how much light is falling on the subject or what the reflection characteristics are, reads the subject the same as though it were middle or neutral gray (18-percent gray). Theoretically, if you take a reflected-exposure meter reading from an 18-percent gray card and expose your film according to the reading, the result should be a picture that matches the tone of the gray card exactly; however, when you take a light meter reading of a white or black object, the light meter still reads the objects as though they were 18-percent gray. When you take a photograph that includes a gray, white, and black card, you will see how, depending on where you take the light meter readings, they affect your photograph; for example, when you take the light meter reading from the black card, the final picture reproduces the black as middle gray, and the gray and white cards as white. When you take the reflected-light meter reading from the white card, just the opposite occurs. In your final picture, the white card reproduces as middle gray, and the gray and black cards reproduce as black. This example demonstrates overexposure and underexposure. When the reading was taken from the black card, the meter raised the black tone to middle gray, and the gray card tone was also raised so it reproduced as white. Thus both the black and gray cards were overexposed The opposite occurred when the exposure was based on the reading from the white card. The white tone was lowered to middle gray and the gray card tone to black, resulting from underexposure. Only a light meter reading taken from the gray card allows all three cards to be imaged at their true tone. A more practical example on the way a light meter reads 18-percent gray is illustrated in the following example. Suppose you are going to photograph a ship alongside a pier. Bright sunlight is striking the ship from the side, causing part of the ship to be in shadow. This creates a brightness difference between the highlight area and the shadow area. Both highlight and shadow areas are equal in size and importance. When you get close to the ship and take a reflected meter reading of the highlight area alone, you expect the finished photograph, like the white card in the above example, to be middle gray. When you stop down the aperture to the recommended exposure of the meter, you are also reducing the amount of exposure from the shadow area. This results in a loss of detail in the shadow area of the ship, because it is underexposed. The opposite effect occurs when you take a meter reading from the shadow area. In this case, the shadow tones are raised to middle gray and have detail, but the highlights are overexposed and completely washed out. If, however, there was an area in this scene whose tone was midway between the highlight and shadow areas, you could use it to take your light meter reading (like the gray card was used in the previous example). In this example, assume there is no tone midway between the two extremes. You can still get an accurate light meter reading of the entire ship. Since the highlight and shadow areas are of equal size, the average light meter reading you get will represent a tone that is midway between the two extremes. REFLECTED LIGHT METER READING VARIATIONS There are variations of light meter readings used to provide accurate light meter readings of different types of scenes. These methods are as follows: the integrated, or average, method, the brightness range method, the darkest object method, the brightest object method, the substitution method, and the bracketing method. Integrated, or Average, Method The technique of making reflected-light meter readings from the camera position is called the integrated, or average, method. This method was used and explained in the examples above. This method is accurate for the majority of photographs taken. The integrated, or average, method of measuring reflected light is acceptable for scenes that consist of approximately equal portions of light and dark areas; however, when a scene is composed of either predominately light or dark areas, the meter reading may not be accurate. The reason for these inaccurate meter readings can be more easily understood by using an example of photographing a checkerboard with alternating black-and-white squares. When the meter is held at a distance to include the entire board, the reflected light from both the black and the white squares influence the meter, so an average reading results. The light measured from this position is the integrated sum of both the white and the black squares, as though the checkerboard were one gray tone. The light meter reading from this point should produce an acceptable image. If you hold the meter so close to one of the white squares that the black squares have no effect on the meter reading, the reading is higher than the integrated reading and the meter indicates that the scene requires less exposure. The same principle applies when a reading is taken close to a black square. The reading indicates that the scene requires more exposure. Each of the meter readings is a measurement of 18-percent gray. You can apply this checkerboard example when you photograph scenes that are predominately light or dark Compensation is required to expose such scenes correctly. As a general guide, you should double the indicated exposure when the light measurement is taken from a predominately light scene and detail is desired in the shadows. When you take a light meter reading from a predominately dark scene and detail is desired in the highlight areas, you should reduce the exposure by one half. Brightness Range Method This method requires you to take two readings from the scene: one from the highlight area where detail is desired and another from the shadow area where detail is desired. You then base your exposure on a point midway between the two readings. The brightness range method of determining exposures for most scenes usually provides detail in both the highlight and the shadow areas. An exception to this is when the exposure latitude of a film is not capable of recording the brightness range of the scene. This can occur with scenes that have extremely great brightness ranges. A scene brightness range is the difference between the brightest and the darkest areas of a scene and is usually expressed as a ratio. The average brightness range of a normal scene is 160:1. Films used for pictorial work are capable of reproducing this brightness range. When the scene exceeds a brightness range of 160:1, you must compromise the exposure. This compromise can be as follows: Underexpose and sacrifice shadow detail to retain highlight detail. Overexpose and sacrifice highlight detail to retain shadow detail. Do not compensate and expose for the midtones and sacrifice both highlight detail and shadow detail. Darkest Object Method The darkest object method of determining exposures is actually a variation of the brightness range method. When you desire detail in the shadow area or darkest object within the scene, you take the light meter reading from this area. This method actually overexposes the film overall, causing the highlight areas of the scene to be greatly overexposed. This overexposure occurs because the light meter averages the light reflected from the shadow area and indicates an exposure to produce middle gray. When a great amount of detail is not needed in the shadow area and you want to expose the overall scene normally, you can take your light meter reading from the darkest object or shadow area and stop down two f/stops. This method provides a good overall film exposure of the shadows, midtones, and highlights. Brightest Object Method Another variation of the brightness range method is the brightest object method. The brightest object method of calculating exposures is used when a highlight area within a scene is the only area within the scene from which you can take a light meter reading. This method can also be used when you want to record detail in the highlight area In both situations, you take only one light meter reading of an important highlight area. When you do not want the highlight to record as a middle-gray tone and desire a good overall exposure of the scene, you simply open up two or three f/stops from the indicated exposure. When you need maximum detail in the highlight area, you can use the reading that the light meter provides. This records the highlight area as medium gray. This method underexposes the film in other areas of the scene that reflect less light. Substitution Method With the substitution method, you replace an object within the scene with an object, such as a gray card. You then take a reflected-light meter reading from this object. You use this method when the other methods of determining exposure are not possible. Such situations may be caused by excessive distance between the light meter and the scene, barriers in front of the scene, or the size of the scene makes it impossible to get an accurate light meter reading. The substitution method is often used in studio situations where objects may be too small to obtain an accurate light meter reading. You should select substitution objects that match the light reflectance quality of the object in the scene; for example, a white card can be used to substitute highlight areas of a distant scene. A dark or a black card can be used to substitute a shadow area, an 18-percent gray card can be used to represent middle gray, or the back or palm of your hand can be used to substitute a gray tone. When the substitution method is used, take the light meter reading from the substituted item under similar lighting conditions that exist in the scene. When the scene is in bright sunlight, the substituted object must also be in bright sunlight. Likewise, a scene in shade requires a substitute light meter reading in shade. You can use each of the methods discussed previously with the substitution method. An 18-percent gray card can be used for the integrated or averaging methods, a dark and a light card can be used for the scene brightness range method, a dark card for the darkest object method, and a light card for the brightest object method. Bracketing Method There are times when unusual lighting or subject brightness prevents you from getting an accurate light meter reading. In these cases, a good insurance policy is to bracket your exposure. To bracket, you should take one picture at the exposure indicated by the light meter, and then take two more exposures: one at one f/stop under the indicated exposure and another at one f/stop over the indicated exposure. When you are in doubt about the correct exposure for a negative type of film, it is always better to overexpose than underexpose. Even though over-exposure produces excess densities in the negative, it still provides a useable image that can normally be corrected in the printing stage. When underexposed, if the image does not exist on the film, no corrective printing techniques can provide image detail. When shooting reversal film (slides), you should bracket in 1/2 f/stop intervals. Because the exposure latitude of slide film is limited to 1/2 f/stop, you should bracket in 1/2 f/stop increments, both under and over the indicated light meter exposure reading. Color slides that are 1/2 f/stop underexposed have more color saturation and are more usable than ones that are 1/2 f/stop overexposed and appear washed out and light. |
![]() ![]() |
|
![]() ![]() |